Alveolar Bone Destruction in Periodontitis- An Overview

  • Pavithra H Dave Postgraduate Student, Department of Periodontics, Meenakshi Ammal Dental College and Hospital, Chennai, Tamil Nadu, India.
  • Jaideep Mahendra Professor & Director of Post Graduate Studies, Department of Periodontology, Meenakshi Ammal Dental College and Hospital, Maduravoyal, Chennai, Tamil Nadu, India.
  • Muskan Bedi Undergraduate Student, Sri Ramachandra Medical College and Research Institute, Porur, Chennai, Tamil Nadu, India.
  • Ambalavanan Namasivayam Professor and Head, Department of Department of Periodontics, Meenakshi Ammal Dental College and Hospital, Chennai, Tamil Nadu, India.
Keywords: Bone Loss, Bone Resorption, Inflammation, Periodontal Bacteria, Periodontitis

Abstract

Inflammatory periodontal disease is caused by periodontopathogenic bacteria. As the inflammation worsens, bone tissue, or alveolar bone, is eventually destroyed. Although the immune system of periodontal tissues protects against the invasion of these bacteria, tissue destruction, including the destruction of bone tissue, happens as a result of the innate and acquired immunity of the host being compromised by the persistent infection. Osteoclasts are necessary for the breakdown of bone. Hematopoietic stem cells give rise to osteoclast progenitor cells, which eventually differentiate into osteoclasts. Furthermore, bone loss happens when osteoclasts resorb more bone than osteoblasts create. Apart from this mechanism, in periodontitis, osteoclasts are activated, and alveolar bone is destroyed by pathogenic factors of periodontal bacteria and mechanical stress. This article describes an overview of the various aspects of bone morphology, factors responsible for bone resorption, and the mechanism of resorption in periodontitis.

References

Hienz SA, Paliwal S, Ivanovski S. Mechanisms of bone resorption in periodontitis. Journal of immunology research. 2015 Oct;2015. doi: https://doi.org/10.1155/2015/615486

Könönen E, Gursoy M, Gursoy UK. Periodontitis: A Multifaceted Disease of Tooth-supporting tissues. Journal of clinical medicine. 2019 Jul 31;8(8):1135. doi: https://doi.org/10.3390/jcm8081135

Abou Neel EA, Aljabo A, Strange A, Ibrahim S, Coathup M, Young AM, Bozec L, Mudera V. Demineralization–remineralization dynamics in teeth and bone. International journal of nanomedicine. 2016 Sep 19:4743-63. doi: https://doi.org/10.2147%2FIJN.S107624

Kim JN, Lee JY, Shin KJ, Gil YC, Koh KS, Song WC. Haversian system of compact bone and comparison between endosteal and periosteal sides using three-dimensional reconstruction in rat. Anatomy & cell biology. 2015 Dec 1;48(4):258-61. doi: https://doi.org/10.5115/acb.2015.48.4.258

Florencio-Silva R, Sasso GR, Sasso-Cerri E, Simões MJ, Cerri PS. Biology of bone tissue: structure, function, and factors that influence bone cells. BioMed research international. 2015 Oct;2015. doi: https://doi.org/10.1155%2F2015%2F421746

Raja IS, Preeth DR, Vedhanayagam M, Hyon SH, Lim D, Kim B, Rajalakshmi S, Han DW. Polyphenols-loaded electrospun nanofibers in bone tissue engineering and regeneration. Biomaterials Research. 2021 Dec;25:1-6. doi: https://doi.org/10.1186/s40824-021-00229-3

Siddiqui JA, Partridge NC. Physiological bone remodeling: systemic regulation and growth factor involvement. Physiology. 2016 May;31(3):233-45. doi: https://doi.org/10.1152/physiol.00061.2014

Abdulkareem AA, Al-Taweel FB, Al-Sharqi AJ, Gul SS, Sha A, Chapple IL. Current concepts in the pathogenesis of periodontitis: from symbiosis to dysbiosis. Journal of Oral Microbiology. 2023 Dec 31;15(1):2197779. doi: https://doi.org/10.1080/20002297.2023.2197779

Löe H, Anerud A, Boysen H, Smith M. The natural history of periodontal disease in man: the rate of periodontal destruction before 40 years of age. Journal of periodontology. 1978 Dec;49(12):607-20. doi: https://doi.org/10.1902/jop.1978.49.12.607

Cekici A, Kantarci A, Hasturk H, Van Dyke TE. Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontology 2000. 2014 Feb;64(1):57-80. doi: https://doi.org/10.1111/prd.12002

Fan J, Caton JG. Occlusal trauma and excessive occlusal forces: Narrative review, case definitions, and diagnostic considerations. Journal of periodontology. 2018 Jun;89:S214-22. doi: https://doi.org/10.1002/jper.16-0581

Manson JD. Bone morphology and bone loss in periodontal disease. Journal of Clinical Periodontology. 1976 Mar;3(1):14-22. doi: https://doi.org/10.1111/j.1600-051x.1976.tb01847.x

Glickman I, Smulow JB. Buttressing bone formation in the periodontium. The Journal of Periodontology. 1965 Sep;36(5):365-70. doi: https://doi.org/10.1902/jop.1965.36.5.365

Vandana KL, GNR BC. Periodontal osseous defects: a review. CODS-Journal of Dentistry. 2018 Dec 1;9(1):22-9. doi: https://doi.org/10.5005/jp-journals-10063-0028

Lei F, Li M, Lin T, Zhou H, Wang F, Su X. Treatment of inflammatory bone loss in periodontitis by stem cell-derived exosomes. Acta biomaterialia. 2022 Mar 15;141:333-43. doi: https://doi.org/10.1016/j.actbio.2021.12.035

Hou L, Ye Y, Gou H, Tang H, Zhou Y, Xu X, Xu Y. A20 inhibits periodontal bone resorption and NLRP3-mediated M1 macrophage polarization. Experimental Cell Research. 2022 Sep 1; 418(1):113264. doi: https://doi.org/10.1016/j.yexcr.2022.113264

Han Y, Huang Y, Gao P, Yang Q, Jia L, Zheng Y, Li W. Leptin aggravates periodontitis by promoting M1 polarization via NLRP3. Journal of Dental Research. 2022 Jun;101(6):675-85. doi: https://doi.org/10.1177/00220345211059418

Published
2023-12-29
How to Cite
H Dave, P., Mahendra, J., Bedi, M., & Namasivayam, A. (2023). Alveolar Bone Destruction in Periodontitis- An Overview. International Journal Of Drug Research And Dental Science, 5(4), 21-28. https://doi.org/10.36437/ijdrd.2023.5.4.D